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ABSTRACT

Biological networks by nature are hard to process in real time
for most of the applications. This work focuses on improving
the speed of processing biological networks, in particular,
faster traversal of genomes which have been mapped into
a network for the detection of causal genes and associated
pathways. Inference of disease causing genes and their path-
ways has achieved a crucial role in computational biology
because of its practicality in understanding the major causal
genes and their interactions that lead to a disease state, and
suggesting new drug targets. In this work, Hadoop's dis-
tributed storage system has been used to store the molecular
interaction network. Graph parallel processing techniques of
Hadoop MapReduce, in conjunction with graph theoretical
approaches have been utilized to improve the accuracy of
results and execution time on benchmark data.
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1 INTRODUCTION

Hadoop MapReduce is a software framework for developing
applications which process massive amount of data that may
span multi-terabytes in size, in parallel in a reliable, fault
tolerant manner on large clusters on thousands of nodes of
commodity hardware. The input data is usually split by the
MapReduce job into independent chunks of data which are
input to the map job thereafter. The map tasks process and
reformat the data in a completely parallel manner which
then undergo a sort and shuffle by the framework before
these are input to the reducer tasks. Typically, a file-system
is used to store both the input and the output of the job.
Scheduling and monitoring tasks and re-executing the failed
tasks are managed by the framework itself. In this way, the
map and reduce functions can be executed on smaller subsets
of large datasets, which in effect provides the scalability that
is critical for big data processing [24].

Graph processing on Hadoop has become a popular and
fast developing research topic in the recent past because of its
applications in diverse fields. Hadoop MapReduce technology
enables us to tackle huge graphs by scaling up many graph
algorithms to run on clusters of machines in a parallel fashion.
For this, parallel processing model with data partitioning is
used in graph processing on Hadoop.

The common pattern followed by the algorithms in Hadoop
MapReduce follows:

(1) In the map phase, input is processed, and certain
key-value pairs are generated based on the algorithm.

(2) In the reduce phase, results are obtained based on
the algorithm and incoming values.

Here, the aim is improvements to the execution time and
accuracy of results for inferring disease causing genes and
associated pathways in molecular interaction networks using
map/reduce framework in conjunction with graph theoretical
approaches. The complexity of computations on molecular
interaction networks is posed by the incredibly large number
of genetic connections, which leads to very large processing
times for the network. So, parallelization of approaches that
are efficient in terms of accuracy of results and execution
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time, has been attempted in this work to get the results
in pragmatic time. Parallelization of all the related works
in literature for tackling the problem of identifying causal
genes and pathways has been implemented using map/reduce
framework and analyzed based on serial execution of all the
approaches using multiple real datasets. To the best of the au-
thors’ knowledge, this is the first parallel implementation for
tackling the problem of inferring causal genes and associated
pathways.

This paper is organized as follows. Section 2 gives an
overview of the reported works in literature and Section 3
provides necessary information for understanding the prob-
lem of identifying disease causing genes and dysregulated
pathways and a brief summary of the parallelized algorithms
for addressing the problem. Section 4 explains parallelization
of the algorithms using MapReduce approach. Section 5
deals with experimentation on real datasets, Section 6 gives
analyses of the results and Section 7 concludes the paper.

2 RELATED WORKS

2.1 MapReduce framework for graph
processing

The fundamentals of Hadoop Distributed File System (HDFS)
and the working of MapReduce and large graph analysis us-
ing Hadoop are presented by Tom White in Hadoop : The
Definitive guide [24]. Tt provides a detailed explanation of the
anatomy of a MapReduce Job run, map phase, shuffle and
sort phase and reduce phase. Extension of the MapReduce
paradigm to graph data and the appropriate generation of
key-value pairs to enable parallelization of graph processing
are given in [2]. An iterative algorithm in the MapReduce
framework, drawbacks of using MapReduce in iterative pro-
cessing, major issues based on execution of tasks and design of
modified MapReduce are addressed in [19]. A detailed study
of parallel data accession distributed file systems like HDFS
and the problems caused by not focusing on the distributed
1/0 resources and global data distribution are presented in
[27]. [25] focuses on finding structures and characters of large-
scale graphs and explains how the MapReduce framework
and its implementation on Hadoop can be used to deal with
large, complex graphs. 3-clique enumeration for large scale
graphs using cluster system with the help of MapReduce is
also presented.

2.2 MapReduce framework for
computational biology

An overview of the current usage of Hadoop and associated
open source software projects in bioinformatics that focus
on next-generation sequencing analysis are explained in [22].
A survey of MapReduce framework operation in different
applications of bioinformatics is presented in [29)].
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3 IDENTIFICATION OF CAUSAL
GENES AND DYSREGULATED
PATHWAYS

The basics of the techniques for identification of causal genes
and dysregulated pathways and graph algorithms for finding
the same is presented in this section. The proposed approach
is to improve the time taken for the identification of causal
genes and dysregulated pathways by traversing the molec-
ular interaction network using parallelization. It involves
the usage of Hadoop distributed storage and MapReduce
paradigm and tweaking them to apply for graph traversal
algorithms for causal gene detection and associated pathways
for improved accuracy of results.

3.1 Biologic information

A gene consists of a segment of DNA and it is the molecular
unit of heredity of a living organism. It is possible to quantify
the level at which a particular gene is expressed during the
process of making a biologically functional molecule of either
RNA or protein [12]. i.e., Each gene is associated with a
numerical expression value [10], [12], [16]. Apart from these,
each gene interacts with some other gene [11]. These genetic
interactions can be represented as a network known as protein
network. These networks form the basis of understanding
cellular processes [13], [30].

Ezxpression values of genes are useful in identifying diseases
[17]. If expression levels (or values) of a gene change between
two sample groups of healthy and affected individuals, then
that gene is said to be a differentially expressed gene [6],
[8], [10]. In many human diseases, some genes’ expression
values vary significantly. There is an increase or decrease in
expression values, from that of disease free persons [6], [26].

The set of disease causing genes that lead to a disease state
is known as causal genes. The set of genes that may cause
a disease state is known as candidate causal genes. Since,
Transcription Factors alter the expression of genes, the set
of candidate causal genes that are linked with Transcription
Factors is referred to as target genes [5], [23]. The basic
problem is to find the set of causal genes, where the set of
causal genes is a subset of the set of candidate causal genes
and candidate causal genes and target genes are known. The
set of pathways in which causal genes are the major members
is known as dysregulated pathways.

Since, this paper deals with the parallelization of the major
works for identifying causal genes and dysregulated pathways
simultaneously, a brief summary of each parallelized algo-
rithm is given next.

3.1.1 Random walk approach. An interaction network is
assembled using molecular interaction data such as protein-
protein interactions, phosphorylation events and transcrip-
tion factor-DNA interactions. A random walk is performed
from the target genes and continued by selecting a vertex
based on transition probabilities at each step. Pathways
connecting causal genes and target genes and a subset of
causal genes that affect the disease state are identified [23].
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3.1.2 eQED algorithm. The expression quantitative trait
loci (eQTL) electrical diagrams (eQED) approach attempts
to improve on the Random walk approach by modeling the
biological network into a very large and complex electrical
circuit. There is a considerable work in available literature
showing the equivalence between electric networks and ran-
dom walks [1], [7], [28]. The large electric circuit is solved
using Kirchoff’s law and Ohm’s law and currents flowing
through all the edges are calculated. Causal gene is deter-
mined as the one with the highest current flowing through it.
This approach gives a deterministic solution as opposed to
stochastic random walk. The essence of the electric circuit
model is that current flow on the edges indicate information
flow direction in the biological system and the path from a
source which has maximum flow would indicate the direction
with the strongest signal transmission [20].

3.1.3 Current flow algorithm with multiple sources and sinks.
Motivated by [20], molecular interaction is considered as an
electric circuit and conductance of each edge is defined based
on gene expression values. The magnitude of the current flow
is calculated after finding voltages, by solving a set of linear
equations. The genes with significant value of current flow
are taken as causal genes. The shortest paths in the set of
all maximum current paths for each pair of source and sink
are considered as dysregulated pathways [14], [28].

3.1.4 Randomized Rounding algorithm. Randomized Round-
ing integrates thresholding of edges with the current flow
approach [14], [28]. This algorithm brings improvement in
both the paths traversed and the time required by selectively
eliminating edges based on some chosen threshold value. This
is done based on the assumption that in a very large network,
edges with weights less than a certain threshold contribute
to less probable paths. In the reduced network, maximum
current flow paths are selected using randomized rounding
approach which are considered as the dysregulated pathways
and members of dysregulated pathways are considered as
causal genes [3].

3.1.5 Rounding with Min-Heap algorithm. In this heuris-
tic algorithm, edge-weights are defined based on expression
values of genes for the molecular interaction network. It
attempts to improve on the time taken to find all the causal
genes and pathways by integrating approximation algorithm
with vertex pruning techniques. The set of the explored paths
is taken as the dysregulated pathways and the members of
the pathways are taken causal genes [4].

3.1.6  Graph pruning approach. This algorithm combines
both vertex pruning and edge pruning techniques in an iter-
ative manner to reduce the size of the graph (pruning) by
making sure that only less important members are getting
removed each time. The collection of selected paths is con-
sidered as the dysregulated pathways and the members of
the pathways are considered as causal genes [5].
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4 PARALLELIZATION USING
MAPREDUCE APPROACH

For all the algorithms that identify causal genes and associ-
ated pathways, the input is a genetic interaction sequence
mapped into a network. The aim is to find the genes that
affect the interactions most, and their associated pathways.
Parameters like currents flowing through edges, correlation
co-efficients are used as approximations for the strength of
interactions between the genes. Genes that are most relevant
in altering these interactions are found by finding most ap-
propriate pathways in the network and checking for genes
which occur the most in these pathways. All the algorithms
for finding causal genes and dysregulated pathways work
by traversing a graph for finding paths based on certain
approach-specific parameters.

The high level paradigm that applies to all these algorithms
is the parallelization of the basic graph traversal problem. i.e,
given the network, sources, sinks and the parameters, find
paths and members of the paths. The first step in the design
is the storage of the input network. The network is loaded
into HDF'S, where it is broken down into smaller blocks and
stored across the cluster.

But, this data cannot be worked up in parallel because
information corresponding to neighbours is stored on physi-
cally different locations across the cluster. To solve this, the
Map phase is used to reformat the input data to make it
a ‘property graph’ such that all the information pertaining
to computation at a certain vertex/edge is stored with that
vertex/edge itself [9]. i.e., each vertex has an identifier called
VertexID and edge has corresponding source and destination
vertex identifiers and edge attributes. These properties are
stored with each edge and vertex in the graph.

The mapper generates key-value pairs from the input. Par-
allelization techniques described in this paper converts the
molecular interaction networks depicting different types of
edges linking genes/proteins into property graphs [3], [14],
[18], [21]. To enable smooth processing despite using dis-
tributed storage, which may put connected vertices on dif-
ferent clusters, the abstraction used for the representation
of the network is the adjacency list/matrix data structure
and the special data structure introduced in Spark called the
‘triplets’ [9]. Networks are represented as key-value pairs, in
which the VertexID is considered as the key and a complex
record called a ‘tuple’ that contains the list of end vertices
corresponding to edges and other attributes of the edges is
considered as the value assciated with the key. The entire
network is thus distributed across the cluster.

Even though different parts of the network may be stored
on different machines, such a network can be processed using
MapReduce triplets. The mapper reads the input and for each
source as a key, it stores the input network and parameters
corresponding to that source in the value corresponding to
that key. The concept of generating Mapper output in such
a way that the computation of the reducer on a certain key
value pair is independent of other pairs is employed in the
implementation. i.e., each source is considered as a key and
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table of Load to HDFS
edges

and

vertices
Iterative Map-Reduce Mappers
Key-Source Value-Dest
Sourcel-(Dest1,Dest2,..) Key-Source Value-Dest
Source2-{Dest1,Dest2,..) Reducers
Key-Source Value-Dest
Key-Source Value-Dest

Figure 1: General overview of the design

the corresponding network or property graph is considered
as the value associated with it.

Since these key-value pairs contain all the information
required to find paths from a particular source to any desti-
nation, these pairs are passed on and are worked in parallel
by the reducers. Reducers execute the corresponding algo-
rithm for causal gene and pathway identification. So, when
one reducer finishes executing, the paths from one source
to all destinations are found. Since, the reducers are being
executed in parallel, the execution time that would be con-
sumed while executing sequentially, would get divided by the
number of sources.

Figure 1 gives a pictorial representation of the design.

5 EXPERIMENTATION

Random walk approach, eQED algorithm, Current flow algo-
rithm with multiple sources and sinks and Randomized round-
ing algorithm have been implemented on Hadoop-2.6.2 single
node cluster (16GB RAM) with Java Runtime Environment-7
and Rounding with min-heap has been implemented on a
three node virtual machine cluster and Graph pruning ap-
proach has been implemented on a multi node cluster with
64GB RAM. All the mappers have been coded in Python. Re-
ducers for Random walk approach, eQED algorithm, Current
flow algorithm with multiple sources and sinks, Randomized
rounding algorithm and Rounding with min-heap algorithm
have been coded in Python and Graph pruning approach
has been coded in C. The serial versions of the approaches
discussed in Section 3.1 have been implemented using R/C
languages.
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5.1 Selection of the input data and
benchmark data

For experimentation, gene expression data of Pancreatic can-
cer of the species, Mus musculus (Mouse) and Rattus norvegi-
cus (Rat) have been collected from the National Center for
Biotechnology Information (NCBI) sponsored Gene Expres-
sion Omnibus data repository [3]. These data contain the set
of differentially expressed genes and associated gene expres-
sion values of multiple healthy and disease instances. Data
are normalized using Robust Multi-array Average method
and statistically significant data are selected using t-test.
This set of differentially expressed genes is considered as
candidate causal genes. Gene interaction networks of differ-
ent cases are downloaded from BioGRID database for each
candidate causal gene. Then, the genes that are differentially
expressed are selected from the fetched data. Target genes
defined in Section 3.1, are taken as the source nodes and
remaining genes are taken as sink nodes [5].

For Rattus norvegicus dataset, the set of target genes
consists of 46 genes and the set of candidate causal genes
consists of 140 genes. For Mus musculus dataset, the set of
target genes consists of 30 genes and the set of candidate
causal genes consists of 28 genes. Different cardinalities of
molecular interaction networks follow: 1135 edges and 58
nodes with a total of 30 such graphs for Mus musculus dataset
and 729 edges and 186 nodes with a total of 46 such graphs
for Rattus norvegicus dataset [5].

Data from different databases and literatures have been
curated as benchmark data for different cases. For this, NCBI
sponsored Gene database, Aceview, Uniprot database and
literatures from NCBI, Nature, Nucleic Acid Research have
been considered [15]. Benchmark data have been obtained
for the species Mus musculus and Rattus norvegicus as 58
genes and 92 genes respectively [5].

5.2 MapReduce Implementation

Sources, sinks and all the edge weights corresponding to
all the sources comprise the input to the mapper. What
enables parallel processing of graphs is the generation of key-
value pairs such that the computation pertaining to any key is
independent of the other keys. i.e, The output key-value pairs
generated by the mapper should be such that for any key, all
the information needed to compute the specific parameters
associated with each algorithm should be available in the
value associated with it. This enables smooth computation
when different keys are being processed by different reducers
on different nodes.

For each algorithm, the key would be the source, and to
find the path, the list of target genes and the edge weights
in the network corresponding to the sources are needed. So,
these would constitute the value associated with the source
key. When the reducer finishes processing a single source
property-graph (key-value) pair corresponding to a particular
algorithm, it will have found all the resultant paths from
that particular source (key) to all the destinations for that
algorithm.
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Initial input size is approximately 9MB-10MB and because
of the large number of interconnections among vertices in
the network, even one iteration of the algorithm, i.e., finding
paths from one source to destination itself consumes a large
amount of time and a larger amount of memory, ranging from
Megabytes to Gigabytes.

6 ANALYSES OF THE RESULTS

Comparison between serial and parallel execution time for
different approaches on all the datasets follows. Here, CPU
time used in executing the program alone is given. Large
amount of execution time in certain methods like current
flow approach in serial mode is due to the way by which
these methods process the intermediate results. As seen
from the results presented in Figures 2 and 3, reduction and
uniformities in execution time of these algorithms have been
obtained.

B Mus musculus Dataset
Serial execution

Execution time in minutes

Mus musculus Dataset
Parallel execution

Approaches

Figure 2: Execution time of Mus musculus

W Rattus Norvegicus Dataset
Serial execution

Execution time in seconds

Rattus Norvegicus Dataset
Parallel execution

Approaches

Figure 3: Execution time of Rattus norvegicus

Accuracy of the results based on benchmark data is pre-

sented in the Figure 4. Accuracies of the parallel execution
are comparable to the values obtained sequentially.
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H Mouse_Pancreatic
cancer Serial execution

Accuracyin %

M Mouse_Pancreatic
cancer Parallel execution
Rat_Pancreatic cancer
Serial execution

m Rat_Pancreatic cancer
Parallel execution

Approaches

Figure 4: Accuracy of the results

7 CONCLUSION

This paper focuses on reducing the execution time of several
causal genes and pathways identification algorithms because
they are computationally intensive while executing sequen-
tially. Proposed approach has attained this objective by
glueing Hadoop MapReduce framework together with graph
theoretical approaches. But, the number of reducers and
thereby reduction in execution time depends on the number
of sources of the input network. This approach can be largely
extended to adapt to any other applications with the same
input structure.
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